Problem Statement
The function $f(x)$ has the property that $f(x + y) = f(x) + f(y) + 2xy \;\;\; \forall \; x \in \mathbb{N}$. If $f(1) = 4$, then the numerical value of $f(8)$ is
The function $f(x)$ has the property that $f(x + y) = f(x) + f(y) + 2xy \;\;\; \forall \; x \in \mathbb{N}$. If $f(1) = 4$, then the numerical value of $f(8)$ is
A new version of content is available.